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Abstract
Shortly prior to death, many species of Lepidoptera infected with nucleopolyhedrovirus

climb upwards on the host plant. This results in improved dissemination of viral occlusion

bodies over plant foliage and an increased probability of transmission to healthy conspecific

larvae. Following applications of Spodoptera exigua multiple nucleopolyhedrovirus for con-
trol of Spodoptera exigua on greenhouse-grown sweet pepper crops, necrophagy was

observed by healthy S. exigua larvae that fed on virus-killed conspecifics. We examined

whether this risky behavior was induced by olfactory or phagostimulant compounds associ-

ated with infected cadavers. Laboratory choice tests and olfactometer studies, involving

infected and non-infected cadavers placed on spinach leaf discs, revealed no evidence for

greater attraction of healthy larvae to virus-killed over non-infected cadavers. Physical con-

tact or feeding on infected cadavers resulted in a very high incidence of transmission (82–

93% lethal disease). Observations on the behavior of S. exigua larvae on pepper plants

revealed that infected insects died on the uppermost 10% of foliage and closer to the plant

stem than healthy conspecifics of the same stage, which we considered clear evidence of

baculovirus-induced climbing behavior. Healthy larvae that subsequently foraged on the

plant were more frequently observed closer to the infected than the non-infected cadaver.

Healthy larvae also encountered and fed on infected cadavers significantly more frequently

and more rapidly than larvae that fed on non-infected cadavers. Intraspecific necrophagy

on infected cadavers invariably resulted in virus transmission and death of the necropha-

gous insect. We conclude that, in addition to improving the dissemination of virus particles

over plant foliage, baculovirus-induced climbing behavior increases the incidence of intra-

specific necrophagy in S. exigua, which is the most efficient mechanism of transmission of

this lethal pathogen.
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Introduction
Baculoviruses are dsDNA viruses that infect insects, particularly the larvae of butterflies and
moths (Lepidoptera) [1]. Larvae usually become infected by feeding on foliage contaminated
with virus occlusion bodies (OBs). During the infection process larvae change color, develop-
ment and feeding activity slows and mobility is reduced [2]. Shortly prior to death, infected lar-
vae migrate to the top of the plant, where they die in a characteristic form hanging from the
pseudopods, a behavior induced by the baculovirus [3]. Recently, a virus gene (egt) was identi-
fied as being responsible for this behavior in Gypsy moth larvae, Lymantria dispar L. [4], but
not in other species of Lepidoptera infected by Autographa californica multiple nucleopolyhe-
drovirus [5, 6]. Increased locomotor behavior prior to death is a similar but distinct baculo-
virus-induced behavior, that is modulated by another virus gene (ptp) in Spodoptera exigua
and Bombyx mori [7–9].

Following death, viral OBs are released into the environment and fall, or are washed by rain-
fall, on to the leaves of the lower parts of the plant, where the infection can be transmitted hori-
zontally to susceptible conspecifics [10]. Other routes of horizontal transmission of these
viruses include the consumption of plant material contaminated by the feces or regurgitate of
virus-infected larvae [11], or through interactions with insect natural enemies [12, 13].

Certain species of Lepidoptera show cannibalistic behavior, particularly during the final lar-
val stages, or in situations of low food availability or high population density [14, 15]. The eco-
logical and evolutionary consequences of this behavior have been examined with reference to
the effects of diet [16], host plant [17], secondary plant chemistry [18, 19], the presence of tox-
ins [20], development and molting [21], endocrinological effects [22], the impact of parasitism
[23, 24], or the risks of predation [25], among others. Cannibalism also is a route for the trans-
mission for certain pathogens, including baculoviruses, when larvae consume infected conspe-
cifics [26–28].

The general term cannibalism, or intraspecific predation, defined as the process of consum-
ing all, or part of a conspecific [29], is a behavior that may occur in different contexts. For
example, in cases in which individuals kill and consume conspecifics, this activity carries risks
of personal injury or reduced inclusive fitness for the cannibal that consumes kin [30]. In con-
trast, the consumption of a conspecific that has died from some other cause can best be termed
intraspecific necrophagy [31], and this is the terminology that we adopt in this study.

The Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) (genus Alphabaculovirus,
family Baculoviridae), is a species-specific lethal pathogen of the beet armyworm S. exigua
(Lepidoptera: Noctuidae) [32], that is used as a biological insecticide against this pest [33].
Cannibalism has been observed in late instars of S. exigua, particularly when reared at high
densities in the laboratory [22]. The prevalence of cannibalism by this pest in the field is uncer-
tain, but following applications of a SeMNPV-based insecticide in greenhouse grown crops,
intraspecific necrophagy of virus-killed insects by healthy conspecifics can be readily observed
(R. Lasa, pers. obs.). These observations indicate that virus-killed cadavers may be attractive to
S. exigua larvae, despite the seemingly high risk of disease transmission that they pose to
healthy conspecifics.

The aim of this study was to examine intraspecific necrophagy in direct choice experiments
and to test for evidence for a volatile attractant or feeding stimulant in virus-killed insects that
may promote this behavior. Using simulated greenhouse conditions, we then examined the
relationship between pathogen-mediated manipulation of larval climbing behavior (also
known as tree-top disease) and pest foraging activity on the frequency of necrophagy and the
likelihood of transmission of this pathogen.
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Material and Methods

Insect colony and virus strain
Larvae were obtained from a laboratory colony of S. exigua, started in 2012 using larvae origi-
nally collected from maize fields close to Monterrey, Mexico. The collection of insects was
authorized by the owner of the land and did not involve any endangered or protected species.
This colony was reared under controlled conditions of 25 ± 2°C temperature, 70 ± 5% relative
humidity and 12:12 light-dark photoperiod, on a semisynthetic diet adapted from Hoffman’s
tobacco hornworm diet [33]. Adults were fed ad libitum on a 10% (wt/vol) sucrose solution.

SeMNPV OBs were kindly supplied by P. Támez-Guerra (Universidad Autónoma de Nuevo
León, Mexico) and used to inoculate fourth instar S. exigua larvae that were subsequently
reared on diet until death. Virus deaths were identified by the characteristic liquefaction of the
insect tegument and, when in doubt, were confirmed by direct observation of Giemsa-stained
OBs using a phase-contrast microscope [2]. Virus-killed larvae were triturated and OBs were
purified as described previously [34]. The OBs were suspended in distilled water, counted
using a Neubauer Improved chamber (Hawsksley, Lancing, United Kingdom) and stored at
4°C prior to use. DNA extracted from these OBs and analyzed using the restriction endonucle-
ases BglII and PstI (described previously [34]) indicated that this strain of SeMNPV was identi-
cal in terms of restriction profiles to that of SeMNPV-US2 (data not shown), which is the
principal active ingredient of the biological insecticide Spod-X (Certis USA LLC, Columbia,
MD). All experiments were performed in the laboratory facilities at the Instituto de Ecología
AC, Xalapa, Veracruz, Mexico (19° 30’ 46.3” N, 96° 56’ 34.8”W).

Production of infected and non-infected insect cadavers
To produce insect cadavers infected with SeMNPV, groups of 50 fourth instars were separated
and individually allowed to feed on a slice of diet (10 x 10 x 2 mm) that had been previously
contaminated on the upper surface with 10 μl of a suspension of 1x108 OB/ml. After 24 h, a
new piece of untreated diet was supplied to the larvae. When larvae died due virus infection,
vials were frozen at -20°C to avoid lysis of the insect tegument. Another group of fourth instar
larvae (controls) was reared on untreated diet (4 days), until they reached the fifth instar, and
were then individualized and stored at -20°C.

Preference test: Infected vs. non-infected cadavers
To assess whether larvae were attracted to infected or non-infected cadavers, a Petri dish choice
test was performed. Spinach plants (Spinacea oleracea L.) purchased in a local supermarket
were decontaminated in 0.1% (wt/vol) sodium hypochlorite for 5 min and then rinsed under
running water for 10 min. Two leaf discs of spinach were cut from leaves that showed the same
texture and color, using a 20 mm diameter cork borer. Discs were placed on opposite sides of
the Petri dish and one frozen infected cadaver was placed at the center of one disc and a frozen
non-infected cadaver was placed at the center of the other disc. Cadavers were allowed to thaw
fully at room temperature. A recently molted fourth instar insect from the laboratory colony
was then placed in the center of the Petri dish and observed continuously during a 30 min
period. Physical contact with the cadaver was recorded, as were acts of necrophagy and the
response time from introduction until each type of behavior was observed. At the end of the
observation period, each larva was placed individually in a 50 ml plastic container with a small
block of diet, reared at 25 ± 2°C until pupation or death due to virus infection. The choice test
was performed on 97 occasions. Treatments were switched between each side of the Petri dish
on each occasion.

Necrophagous Transmission of a Baculovirus
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Feeding stimulant effects
To assess whether virus-infected cadavers contained a feeding stimulant, spinach leaf discs were
prepared as described above. Each of four discs was divided into two equal sectors using a non-
toxic fine tipped marker. Discs were placed at points 40 mm equidistant from the center of a Petri
dish so that the dividing line of each disc was directed towards the center of the dish. One half of
each disc was painted, using a small brush, with ~20 μl of a crude suspension of OBs that was
obtained directly from a dead infected larva and the other half was covered with distilled water as
a control. Treatments were assigned at random to each side of the leaf disc. When treatments had
dried, a recently-molted fourth instar larva from the laboratory colony was placed in the center of
the Petri dish and allowed to feed for 24 hours at 25 ± 2°C under 960 lux ilumination in an insec-
tary room. The sum of feeding events that the larvae made in each treatment of the four discs was
counted. Feeding events were identified by discrete perforations made in the parenchyma of the
OB-contaminated and control sides of each leaf disc. The test was performed a total of 45 times.

Another experiment was performed with the same methodology, but in this case, the control
side of each leaf disc was painted with ~20 μl of homogenate of non-infected larval cadavers, instead
of water. The other half of each disc was covered with a suspension obtained from crude infected
cadavers as described above. In this case, in addition to counting the number of feeding events dur-
ing a 24 h feeding period, the leaf area consumed in each disc treatment was measured using high
resolution photos with the ImageJ program [35]. The test was performed a total of 45 times.

Response to volatile components of infected vs. non-infected cadavers
To determine the attraction of healthy larvae to volatile compounds of cadavers, a Y tube olfac-
tometer was constructed from transparent non-absorbent acrylic with a rectangular cross-sec-
tion, 20 cm long and 3x3 cm wide, with two arms 10 cm long separated by a 45° internal angle.
Incoming air, from a small aquarium pump (Elite 800, Grupo Acuario Lomas, Mexico), was fil-
tered through activated charcoal and split equally between two, 450 ml glass holding chambers
(flasks). One chamber containing a single non-infected cadaver on a spinach leaf disc served as
a control whereas the other chamber held the test material comprising a single virus-killed
cadaver on a spinach leaf disc. The air passed from each chamber into the respective arms of
the Y tube, before entering the main tube of the olfactometer. Airflow was maintained at 400
ml/min by two inline flowmeters (Cole Parmer Instrument Co., Chicago, IL).

Holding chambers were closed to concentrate the volatile for five minutes, and then, the air-
flow was passed through the odor source into the arms of the olfactometer. A recently molted
fourth instar larva from the laboratory colony was placed at the base of the main tube and
allowed to respond for 15 minutes. A positive response was recorded when a larva crossed a
pre-defined choice line located at an arbitrary distance of 7 cm along each of the arms of the Y-
tube section of the olfactometer, as is usual for Y tube olfactometer studies with invertebrates
[36]. After each replicate the olfactometer was cleaned using neutral detergent and water, and
arms rotated 180° to avoid a position effect. A total of 55 replicates were performed.

Baculovirus-induced climbing and foraging behavior of larvae on plants
This study was conducted to determine the spatial distribution of healthy and infected larvae of S.
exigua on the plant and the relationship of these distributions with the foraging behavior of healthy
conspecifics. The experiment was conducted on sweet pepper plants (var. Annum) between 45
and 83 cm height and with an average of 34 true leaves. The plants were grown in a mixture of
compost, soil and volcanic pumice (2:1:1) in sturdy plastic bags (20 x 25 cm) placed inside cages of
60 x 60 cm wide and 1 m height and covered with a nylon mesh with a 1 mm pore size. The test
was carried out in an environmental simulation laboratory (16 m2 area) under controlled
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conditions, (25 ± 2°C) temperature, (70 ± 5%) relative humidity and 12:12 h light-dark photope-
riod. Two fourth instar larvae were placed simultaneously on the stem at the center of each plant;
one larva had been infected three days before with a suspension of 2.6x107 OBs/ml using the drop-
let bioassay technique [37], the other was a healthy larva of the same age. Larvae were observed at
2 h intervals until the infected larvae died and showed no movement. At this moment, the healthy
larva was sacrificed by crushing the cephalic capsule with entomological forceps, at the point on
the plant where it was observed at the moment of death of the infected conspecific.

The positions of the infected and non-infected larvae on the plant at the moment of death
were noted. For this, the vertical distance between the base of the plant and each cadaver was
measured as was the horizontal distance between the cadavers and the plant stem.

A recently-molted fourth instar larva was then immediately placed on the stem at the center
of the plant and allowed to move freely. The larva was observed at 1 h intervals for a period of
48 h. Hourly nocturnal observations were performed using six 250 W red light bulbs placed at
a distance of 2.5 m above the plants. At each observation, the activity of the larva was classified
as feeding, walking or resting. An act of necrophagy was recorded when a larva was observed
feeding on a cadaver during one or more sequential observations without interruption. In cases
in which the larva was observed to cease feeding and move away from the cadaver (>5 mm)
during one or more observations, and then return to the cadaver and recommence feeding,
each event was considered as a distinct act of necrophagy. Finally, the location of the larva at
each observation was recorded in terms of vertical and horizontal distances, as described
above. The shortest direct line distance between the healthy larva and each of the cadavers
(infected and non-infected) was also noted.

In a few cases in which healthy larvae fell off the plant, they were placed at the base of the
stem so that they could climb back onto the plant. After 48 h of hourly observations, larvae
were individualized in 50 ml plastic cups with a small block of diet and reared under laboratory
conditions until they reached the pupal stage or died due to virus infection. A total of 30 repli-
cates were performed involving a total of 1440 hours of observation.

Data analysis
The frequency of response of larvae to leaf discs with cadavers was analyzed by χ2 test. Mean lar-
val response times to each type of cadaver were compared by t-test. The number of feeding
events and the leaf area consumed in each segment of the leaf discs were also compared by t-test.
The position of the larvae on the host plant (vertical and horizontal distances, averaged for each
replicate) was subjected to analysis of variance (ANOVA). Assumptions of normality and homo-
scedasticity were examined in all cases. The frequency of observations on which the experimental
larva was closer to the location of each type of cadaver (infected and non-infected) was summed
for each insect during the experimental period and a generalized linear model was fitted with a
binomial error structure specified. As such, each insect was considered to be a single replicate.
The significance of changes in model deviance following fitting of explanatory variables were
determined with reference to χ2 statistics. The mean numbers of acts of necrophagy performed
on each type of cadaver were not normally distributed and were compared by Mann-Whitney
U-test. Finally, χ2 tests were conducted on the prevalence of larvae that performed necrophagous
acts and the prevalence of mortality in insects that consumed each type of cadaver.

Results

Preference test: Infected vs. non-infected cadavers
Of the 97 insects tested, 48 (55%) moved towards the leaf disc with the infected cadaver and 39
(45%) selected the disc with a non-infected cadaver (χ2 = 0.931, df = 1, P = 0.33), whereas 10
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larvae did not respond and were eliminated from the analysis. Of the larvae that selected the
infected cadaver, 33 (69%) had physical contact with the cadaver and 15 (31%) were observed
to feed on the cadaver. Among larvae that selected the non-infected cadaver, 31 (79%) had
physical contact with the cadaver and 8 (21%) fed on the dead insect. The prevalence of feeding
on each type of cadaver was similar (χ2 = 1.275, df = 1, P = 0.259). The prevalence of virus
induced mortality did not differ between larvae that had contact with infected cadavers (82%
mortality) and those that fed on infected cadavers (93% mortality) (χ2 = 0.002, df = 1,
P = 0.96). The larvae that only had contact or fed on the non-infected cadavers subsequently
died of virus infection at a prevalence of 13% and 6%, respectively (Fig 1). The mean (± SE)
response time to arrive at infected cadavers (579 ± 63 sec) and non-infected cadavers (760 ± 71
sec) was similar (t = 1.8, df = 80, P = 0.07).

Feeding on virus contaminated vs. non-contaminated foliage
One larva did not feed on either leaf disc and was eliminated from the analysis. A greater num-
ber of feeding events were observed in the segment contaminated with a crude preparation of
virus-killed insects than on segments treated with water (t = 3.13, df = 88, P = 0.002) (Fig 2A).
However, in a subsequent experiment, no significant differences (t = 0.52, df = 88, P = 0.433)
were observed in the mean number (± SE) of feeding events in the segment contaminated with
virus-killed insect homogenate (7.2 ± 0.5) or homogenate of non-infected insects (7.7 ± 0.6)
(Fig 2B). Similarly, no significant differences were detected in the mean (± SE) total surface
area consumed by larvae on segments contaminated with virus-killed insect homogenate
(32.1 ± 2.0 mm2) or homogenate of non-infected insects (30.3 ± 2.2 mm2) (t = 0.771, df = 88,
P = 0.291).

Response to volatile components of infected vs. non-infected cadavers
No significant difference was observed in the response of larvae to volatiles produced by spin-
ach discs with infected cadavers (56% positive response) and spinach discs with non-infected
cadavers (44%) (χ2 = 0.890, df = 1, P = 0.345). Similarly, the mean (± SE) response time to
infected cadavers (191 ± 23 seconds) and non-infected cadavers (202 ± 33 seconds) was similar
(t = 0.263, df = 53 P = 0.79).

Baculovirus-induced climbing and foraging behavior of larvae on plants
Of the 30 insects (replicates), 8 fell off the plant and did not climb back on during the 48 h
observation period; these insects were eliminated from the study, leaving 22 active larvae and a
total of 1056 hours of observation. As plants varied in height, the vertical position of each insect
was expressed as percentage of total plant height (Fig 3A), with 100% being the topmost point
on the plant. The vertical distribution of larvae on the plants varied significantly according to
infection status (non-infected vs. infected cadavers) and the activity of the healthy insects
(F = 3.33, df = 4, 95, P = 0.01). On average, infected larvae died on the upper 10% of the plant,
whereas at the moment of death of the infected insect, non-infected larvae were observed at a
significantly lower height, in the upper middle part of the plant (at*75% of the total height of
the plant), (t = 3.2, df = 95, P = 0.001). At this moment, non-infected larvae were sacrificed in
situ.

Walking or resting took place at a height that was similar to the height at which the non-
infected larvae were sacrificed, whereas feeding tended to occur at sites that were intermediate
between the infected and non-infected cadavers and which did not differ significantly from the
mean height of either the infected (t = 1.83, df = 95, P = 0.06) or non-infected (t = 1.19, df = 95,
P = 0.23) cadavers (Fig 3A).

Necrophagous Transmission of a Baculovirus
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The horizontal position of larvae also differed according to infection status and the activity
of healthy insects (F = 3.94, df = 4, 95, P = 0.005) (Fig 3B). Infected larvae died significantly
closer to the stem when compared with the position where non-infected larvae were sacrificed
(t = 3.53, df = 95, P< 0.001). The larvae released subsequently, usually fed at sites away from
the central stem that did not differ significantly from the average horizontal position of non-
infected cadavers (t = 1.24, df = 95, P = 0.21). In contrast, when walking (t = 0.41, df = 95,
P = 0.68) or resting (t = 0.97, df = 95, P = 0.33), larvae were closer to the central stem, at a hori-
zontal distance that did not differ significantly from that of infected cadavers.

The straight-line distance was measured between healthy larvae and infected and non-
infected cadavers at each hourly observation (Fig 4A). The frequencies with which each larva
was closer to the infected or non-infected cadaver were compared by fitting a generalized linear
model with a binomial error structure specified. On average, larvae were observed to be closer
to the infected cadaver on two-thirds (66.5%) of occasions and closer to the non-infected
cadaver on one third (33.5%) of occasions, indicating a significant tendency to be closer to the
infected cadaver than expected given a random distribution on the plant (χ2 = 175.1, df = 1,
P< 0.001) (Fig 4B).

Of the 22 larvae that were observed during the experiment, 12 (55%) fed only on the infected
cadaver, while 4 larvae (18%) fed only on the non-infected cadaver, 4 larvae (18%) fed on both
types of cadaver and 2 larvae did not feed on either cadaver. Overall 48 acts of necrophagy were
observed during the 1056 h observation period (Fig 4A). Necrophagous larvae performed an
average of 2.3 ± 0.3 acts of necrophagy on the infected cadaver during the observation period,
which was significantly more frequently than acts of necrophagy on the non-infected cadaver
that were never performed more than once (Mann-Whitney U = 20, P = 0.007), i.e. larvae never
returned to the non-infected cadaver to resume necrophagous feeding, whereas 13 out of 16 lar-
vae that fed on the infected cadaver did so on more than one occasion. Necrophagy also occurred

Fig 1. Percentage of mortality of S. exigua larvae that fed on (necrophagy) or had physical contact with infected and non-infected cadavers
(n = 82).

doi:10.1371/journal.pone.0136742.g001
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significantly more rapidly towards infected cadavers; 13 out of 16 larvae fed on infected cadavers
during the first 24 h, compared to 3 out of 8 larvae that fed on non-infected cadavers during the
same period (χ2 = 4.59, df = 1, P = 0.032). Mortality caused by virus infection was 100% in those
larvae that fed on infected cadavers and 50% in those that consumed the non-infected corpse. Of
the three larvae that did not practice any act of intraspecific necrophagy, one subsequently died
of lethal polyhedrosis disease. As the laboratory insect colony was free of virus disease, observa-
tions on virus acquisition by insects that had no direct contact with the infected cadaver were
likely a result of contamination of plant surfaces by virus-containing feces and regurgitate of the
infected larvae that foraged over the plant prior to death.

Discussion
Greenhouse observations by one of us had indicated that conspecific necrophagy may be com-
mon in S. exigua, especially following applications of a virus-based insecticide. This behavior

Fig 2. Number of feeding events (+ SE) of S. exigua larvae on spinach discs with different treatments.
a) disc contaminated with virus-infected cadaver vs water (control) (n = 45); b) disc contaminated with
infected cadaver vs non-infected cadaver (n = 45). Different letters indicate significant differences between
groups (t test, p <0.05).

doi:10.1371/journal.pone.0136742.g002
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appears highly risky given the lethality of the SeMNPV virus. This led us to ask whether virus-
killed larvae were particularly attractive to healthy conspecifics which we examined using
choice arena and olfactometer tests.

Laboratory studies in Petri dish arenas indicated no differences in the frequencies of selec-
tion, contact or necrophagous feeding on infected and non-infected cadavers. However, both
physical contact and feeding on infected cadavers resulted in a high prevalence of lethal virus
infection in experimental insects. Low levels of virus infection were even observed in insects
that had no direct contact with the infected cadaver, indicating that moving around the arena

Fig 3. Distribution of live larvae on plant when they were eating, walking and resting, as well as the
position of the cadavers (infected and uninfected), (n = 23). a) Height on plant, the scale is presented in
terms of relative height with respect to the total height of each plant. b) Distance from stem (cm). Different
letters indicate significant differences (ANOVA, p <0.05).

doi:10.1371/journal.pone.0136742.g003
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was sufficient for virus transmission in some cases. This reflects the very high pathogenicity of
this virus [38].

When offered leaf discs on which one sector had been treated with the remains of infected
cadavers, larvae showed a clear preference for the sectors treated with infected cadavers over
control sectors, although this preference disappeared when offered a choice between sectors
treated with infected and non-infected larvae. This suggests that healthy S. exigua larvae are
attracted to insect remains whether virus-contaminated or not. In a previous study on canni-
balism by final instar S. frugiperda larvae, no evidence was found for discrimination between
infected and non-infected conspecifics, both living or dead, whereas an earlier instar avoided
necrophagy of virus-killed larvae, suggesting that this response may be stage specific in some
species [26].

Similarly, we found no evidence for differential responses to volatiles emitted by infected
and non-infected cadavers placed on leaf discs, suggesting that attraction to virus-killed con-
specifics is not mediated by one or more pathogen-related volatile compounds. Although insect
pathogenic viruses have not been reported to produce volatile compounds that favor their
transmission, a number of plant pathogenic viruses release compounds that attract their insect
vectors to infected plants [39]. Similarly, studies on insect cadavers infected by the fungal path-
ogen Beauveria bassiana suggests a role of volatile compounds released by the fungus in
attracting adult mosquitoes which then become infected [40], whereas termites, flies, and pred-
atory ladybeetles can detect pathogenic fungi by olfaction and strongly avoid contact with con-
taminated substrates [41–44].

The findings of choice test and olfactometer studies contrasted strongly with observations
performed on pepper plants under simulated greenhouse conditions. Studies on plants revealed
the importance of the interaction of baculovirus-induced climbing behavior and larval foraging
on intraspecific necrophagy in this pest. Encounters between S. exigua larvae and infected
cadavers on pepper plants were invariably followed by intraspecific necrophagy that was
shown to be a highly efficient route of transmission of SeMNPV.

Baculovirus-induced climbing behavior resulted in infected insects dying in the upper 10%
of the plant, which was significantly higher up the plant than the site at which non-infected
conspecifics were located at the moment of death of the diseased insect. This was because non-
infected insects were often engaged in walking or resting behaviors at intermediate heights any

Fig 4. Mean distance between healthy larvae and infected or non-infected cadavers. a) Hourly means of observations performed over a 48 h period on
each larva (n = 22 larvae). Points labeled with numerical values indicate number of acts of necrophagy observed at each time point (values shown in blue
refer to necrophagy on non-infected cadavers, values in red refer to necrophagy on infected cadavers); b) Mean percentage of observations in which the
experimental insect was closer to the infected (red column) or non-infected (blue column) cadaver. Vertical bars indicate SE.

doi:10.1371/journal.pone.0136742.g004
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particular moment, whereas infected larvae tended to be located at higher parts of the plant at
death due to the climbing activity elicited by the virus infection. Feeding by healthy larvae gen-
erally occurred in the upper 15% section of the plant (Fig 3A) in which young leaves are pres-
ent. These leaves tend to be higher in nitrogen and lower in secondary plant compounds than
older leaves lower down the plant [45, 46]. This matches the behavior of this pest on green-
house-grown pepper crops, in which young leaves on the upper section of the plant are the
main target for feeding by larvae [47]. The height at which feeding took place broadly over-
lapped the height at which infected cadavers were found such that the probability of contact
and necrophagy was much greater for infected compared to non-infected cadavers.

An additional aspect of baculovirus-induced climbing behavior in this insect was the obser-
vation that infected insects died close to the central stem of the plant. Such virus-mediated
behavior could be adaptive as larvae moving over the plant often encountered the remains of
the infected cadaver as they climbed up the plant stem and outwards to reach young leaves,
thus increasing the likelihood of contact, necrophagy and virus transmission. Death at a site
shaded by leaves in the uppermost 10% of the canopy and close to the central stem may also
reduce exposure to solar ultraviolet radiation and increase the persistence of OBs on the plant
surfaces [48, 49]. Death of infected insects close to the stem of the plant has not been reported
previously as a characteristic of baculovirus-induced climbing behavior as far as we are aware,
although unusually, nucleopolyhedrovirus-infected Winter moth larvae, Operophtera brumata,
tended to move down the stem of host plants prior to death [50]. This resulted in contamina-
tion of host plant stems and transmission to early instar larvae that subsequently climbed up
plant stems to feed on foliage. As such, given the high degree of host specificity of these viruses,
baculovirus manipulation of insect behavior is likely to be adapted to the specific life cycle
characteristics and feeding habits of each host insect species.

Differences were observed in the locations (vertical and horizontal distances) at which feed-
ing, resting and walking behaviors were observed on pepper plants. As mentioned, feeding
behavior is likely to be modulated by leaf chemistry, as larvae forage for leaves with high nutri-
tional content and high digestibility [46]. In contrast, walking usually involved movement
along leaf axils and up the plant’s central stem. Resting and walking behaviors were observed at
similar locations. In some lepidopteran species larval displacement differs markedly between
instars [51, 52], and this can affect the stage-specific probability of baculovirus infection when
movement involves moving across a gradient of pathogen concentration on the host plant [53].
Displacement during foraging can also affect the probability of acquisition of a lethal dose of
viral OBs, as infected larvae excrete large quantities of OBs in their feces or in gut regurgitate
that can be transmitted to healthy conspecifics [11]. This was clear in our studies as a large frac-
tion of the larvae that had no physical contact with infected cadavers themselves developed
lethal polyhedrosis disease after moving over the plant on which an infected insect had foraged
previously. This highlights the very high transmissibility of this virus [38].

Cannibalism and intraspecific necrophagy are effective mechanisms for the horizontal
transmission of viruses in insect populations [54–56], including lepidopterans [22, 26, 27, 28,
57]. Interestingly, larvae of the Gypsy moth, L. dispar, were shown to be able to detect and
avoid the remains of virus infected conspecifics [58]. These observations were confirmed by
Parker et al. [59] who also demonstrated significantly reduced feeding behavior on foliage con-
taminated with viral OBs and heritable variation in the ability of larvae to detect and avoid the
remains of infected cadavers. This contrasts with the findings of our study in which once an
infected cadaver had been discovered, 33% (15/45) of S. exigua larvae consumed the infected
cadaver in laboratory choice tests. Necrophagy on an infected cadaver was more frequently
observed on pepper plants, with 73% (16/22) of larvae involved in this act. We did not examine
the genetic basis or heritability of this behavior, so cannot determine whether larvae that
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avoided necrophagy were genetically distinct from necrophagous conspecifics. A preference for
consumption of infected over non-infected cadavers was detected inHelicoverpa armigera,
especially when several days had elapsed since the death of infected cadavers, suggesting that
microbial decomposition may increase their attractiveness to necrophagous conspecifics [27].

Intraspecific necrophagy is clearly a risky behavior in insect populations that are infected by
orally-transmitted virus pathogens. Necrophagy in S. exiguamay therefore reflect specific
nutritional requirements of larvae that develop on host plants in which certain nutrients, such
as nitrogen, may be in short supply [60, 61]. In this respect, insect cadavers are likely to repre-
sent a rich source of proteins, fatty acids and other nutrients [62, 63]. Indeed, the prevalence of
cannibalism in Spodoptera spp. increased when larvae developed on plants with low levels of
nitrogen [64], or when the availability of alternative food sources was limited [26]. Similar
results have been reported in other orders of insects, resulting in increased survival of necroph-
agous insects when conventional food resources were rare [65]. Moreover, some of the com-
pounds produced during the decomposition of insect cadavers may be volatile and these can be
used as cues by necrophagous insects to locate nutritional resources [66].

In conclusion, climbing in baculovirus infected insects has been shown to be a pathogen-
induced behavior that increases the dispersal of viral OBs on the host plant as the insect
cadaver disintegrates and OBs fall, or are washed by rainfall, over inferior plant foliage [3, 52,
67]. Despite greenhouse observations indicating that SeMNPV-infected cadavers were attrac-
tive to healthy conspecifics, laboratory choice tests and olfactometer studies provided no evi-
dence for the existence of virus-associated olfactory or phagostimulant factors that might
induce intraspecific necrophagy in S. exigua larvae. We conclude that baculovirus-induced
climbing behavior, involving an increase in the height of infected larvae on the plant and their
movement close to the central plant stem, increases the frequency of encounters between virus-
infected cadavers and healthy larvae foraging for young foliage. This resulted in a very high
incidence of intraspecific necrophagy; a behavior that invariably resulted in transmission of
this lethal virus pathogen.

Supporting Information
S1 Data. Responses of experimental insects to infected and non-infected insect cadavers on
spinach leaf disks in Petri dish areas (experiment 1). These results are summarized in the
text and Fig 1.
(XLS)

S2 Data. Results of choice test in which larvae were offered leaf disk sectors treated with (i)
water vs. infected insect homogenate and (ii) infected insect homogenate vs. non-infected
insect homogenate. Number of feeding events (for i and ii) and area consumed (for ii) are
given. These results are shown in Fig 2A and 2B.
(XLS)

S3 Data. Olfactometer response times (in seconds) for insects given a choice of infected vs.
non-infected cadaver. The results of this study are described in the text for the corresponding
olfactometer experiment.
(XLS)

S4 Data. Results of insect behavior on plants with one infected and one non-infected
cadaver. Hourly observations were performed on 22 individual healthy insects (replicates)
over a 48 h period. At each observation insect activity was classified as feeding, walking or
resting and the proximity of the experimental insect to the infected and non-infected
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cadavers was noted. The results are summarized in Fig 3A and 3B and Fig 4A and 4B.
(XLS)
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