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Nutritional and non-nutritional 
food components modulate 
phenotypic variation but not 
physiological trade-offs in an insect
Carlos Pascacio-Villafán, Trevor Williams, Andrea Birke & Martín Aluja

Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-
history traits has benefited greatly from the study of combinations of nutritional and non-nutritional 
food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, 
to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with 
varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that 
fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental 
periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the 
adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal 
development time and adult desiccation and starvation resistance, we did not detect physiological 
trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens 
development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary 
metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly 
ecological interactions. We provide a unique experimental and modelling approach useful in generating 
predictive models of life history traits in a variety of organisms.

The nutritional balance, quantity and quality of food modulate an individual’s phenotype and also mediate  
trade-offs between life-history traits of consumers, including insects1–3 and vertebrates4,5. Nutritional and 
non-nutritional food components, such as plant secondary metabolites, modify the behaviour and mediate the 
development and health of consumers6–8. As a result, the ecology and the evolution of animal life-history traits are 
influenced by food or, more specifically, by the various components present in food9,10.

The study of diet-induced phenotypic variation in life-history traits of organismal, ecological and evolutionary 
significance has attracted particular attention in biological and medical fields11,12. The nutritional bases of aging, 
starvation and desiccation resistance, and immune system function have been explored using insects as model 
organisms3,11,13. Nutritional sciences, particularly nutritional ecology and physiology, have developed much of the 
present theoretical understanding based on studies with insects6,14. A major challenge in these fields is to explore 
how the interactions among food components affect the phenotype of animals with similar and contrasting life 
histories15–17.

Immature development, survival, and adult emergence of flies (Diptera) are often negatively affected by high 
concentrations of amino acids or proteins in the larval food2,18, whereas high carbohydrate content has been 
associated with reduced pupal weights19, and improved desiccation and starvation resistance13. Similarly, dipteran 
development is often impaired by high concentrations of secondary metabolites in their food20, although the 
effects of such compounds can be modulated by the balance of protein and carbohydrate14,21,22.

Larvae of the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), feed on the fruit of several  
wild and cultivated plant species, many of which are economically important fruit crops23. Frugivorous insects 
represent a feeding guild that remains largely unexplored in the nutritional biology of arthropods14,24. Here, 
we examined the hypothesis that early life nutrition has cascading effects across the larval, pupal and adult 
phenotypes, shaping life history of A. ludens. We used response surface methods25 to model larval survival to 
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pupation, larval and pupal development time, pupal weight, adult emergence, and adult desiccation and star-
vation resistance of A. ludens as a function of larval diet comprising varying proportions of yeast (a protein 
source) and sucrose (carbohydrate) (Table 1), and varying concentrations of chlorogenic acid. Chlorogenic 
acid is a low molecular weight phenolic compound involved in plant defence against phytophagous insects26,27, 
and it is found in varying amounts in apple (Malus ×​ domestica Borkh) cultivars, some of which are resistant to  
A. ludens attack20. This compound has the ability to interact with proteins to reduce their nutritional value28, and 
affect insect development and survival29,30. We further examined the relationship among larval, pupal and adult 
life-history traits for signs of physiological trade-offs mediated by nutrients in the larval diet, as is predicted by 
resource allocation theory31.

Methods
Experimental Flies.  A laboratory colony of A. ludens started in 1998 was maintained on artificial diet in 
the laboratories of the Red de Manejo Biorracional de Plagas y Vectores of the Instituto de Ecología A.C., Xalapa, 
Mexico (RMBPV). This colony originated from pupae recovered from field-collected citrus fruit and was initially 
provided by the Comité Estatal de Sanidad Vegetal (DGSV-SAGARPA) in Xalapa, Veracruz32. At the moment 
of the study, the A. ludens colony had been laboratory-reared in the RMBPV for over 100 generations, and the 
last introduction of wild flies to the colony (25 females and 27 males) was made eight months before. Details 
on rearing of A. ludens have been published elsewhere32. In short, parental flies aged 13–16 days were held in 
30 ×​ 30 ×​ 60 cm plexiglas cages, and provided ad libitum access to water and food consisting of a mixture of 
hydrolysed protein and refined sucrose. Flies oviposited on transparent silicon substrates. Eggs were collected 
from the oviposition medium and washed in 0.2% (wt/vol) sodium benzoate solution, rinsed with tap water, 
placed on pieces of terylene cloth on top of moistened cotton inside Petri dishes, and incubated in the dark at 
30 ±​ 1 °C and 70 ±​ 5% relative humidity for four days until they hatched. On the day of hatching, neonate larvae 
were used in experiments.

Experimental Diets.  Experimental diets were modifications of the formula used for mass-rearing A. ludens 
at the Moscafrut sterile insect production plant at Metapa, Chiapas, Mexico33. Diets were oligidic, i.e., most of 
their ingredients were not chemically defined, with inactivated torula yeast (Candida utilis) as source of protein 
and sucrose as source of digestible carbohydrate.

Experiment 1.  A basic diet was prepared consisting of (percentage by weight): 6.20% corn flour, 22.1% corncob 
fractions, 0.12% guar gum, 0.12% nipagin, 0.47% sodium benzoate, 0.50% citric acid and 70.49% water. Portions 
of 21.5 g (wet wt) of the basic diet were thoroughly mixed with 3.55 g (dry wt) of each of 17 yeast ×​ sucrose mix-
tures (Table 1). In this way, 85 portions of diet were prepared (17 diets ×​ 5 replicates), each weighing 25 g.

The protein, lipid, carbohydrate and energy content of yeast and sucrose was analysed at the Laboratorios de 
Alta Tecnología de Xalapa, S.C. (LATEX), in Xalapa, Veracruz, Mexico, following standard bromatological meth-
ods34. We used this information to estimate the nutrient and calorie contribution of each yeast ×​ sucrose mixture 
to the diets (Table 1 and Supplementary Table S1).

Mixture No. Yeast (%) Sucrose (%) Protein (%)a (Lipid (%))a Carbohydrate (%)a Calories (kcal/3.55 g)a

D1 0 100 0.014 0 14.18 14.20

D2 3 97 0.206 0.0004 13.91 14.12

D3 7 93 0.461 0.0009 13.55 14.01

D4 12 88 0.781 0.0017 13.09 13.87

D5 24 76 1.548 0.0034 11.99 13.55

D6 32 68 2.059 0.0045 11.27 13.33

D7 38 62 2.442 0.0053 10.72 13.17

D8 42 58 2.711 0.0059 10.34 12.92

D9 50 50 3.209 0.0071 9.63 12.85

D10 58 42 3.708 0.0082 8.92 12.52

D11 62 38 3.976 0.0088 8.53 12.53

D12 68 32 4.359 0.0096 7.99 12.37

D13 76 24 4.871 0.0107 7.26 12.15

D14 88 12 5.637 0.0124 6.16 11.83

D15 93 7 5.957 0.0132 5.71 11.69

D16 97 3 6.212 0.0137 5.34 11.59

D17 100 0 6.404 0.0142 5.07 11.51

LY-HS 34 66 2.219 0.0049 11.04 13.28

HY-LS 55 45 3.524 0.0078 9.18 12.72

Table 1.   Nutritional and calorie contribution of yeast:sucrose mixtures to experimental diets in 
Experiment 1 (D1-D17), and Experiment 2 (low yeast-high sucrose [LY-HS] and high yeast-low sucrose 
[HY-LS]). aEstimated from separate bromatological analyses of yeast and sucrose (Supplementary Table S1).
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Experiment 2.  A low yeast-high sucrose and a high yeast-low sucrose diet (Table 1 and Supplementary Table S1) 
were prepared. We took 11 portions from each of these diets, each consisting of 100 g, and placed each of them 
in 0.5 L plastic containers (11 cm in diameter by 7 cm in height). Simultaneously, a 1% (wt/vol) stock solution of 
chlorogenic acid (purity ≥​ 95%, Sigma-Aldrich Company, Toluca, Mexico) was prepared by dissolving 622 mg of 
chlorogenic acid in a solution of 8% ethanol (vol/vol) in water. Portions of diet in 0.5 L plastic containers were 
treated with 16 or 32 mg of chlorogenic acid from the stock solution and mixed by stirring with a spatula for three 
minutes. Control diets were treated with an identical volume of 8% ethanol solution alone. The higher concentra-
tion tested (32 mg/100 g) was within the range of chlorogenic acid concentrations present in apple cultivars that 
are resistant to A. ludens attack20,35.

Experimental Designs.  Experiment 1.  We used a mixture experiment36 to evaluate the proportional 
effects of yeast ×​ sucrose mixtures on larval, pupal and adult phenotypes of A. ludens (see Response variables 
for details on traits measured). The experiment was a two component (yeast and sucrose) mixture design, con-
structed using D-optimal criteria to provide the most accurate estimates of the model coefficients to satisfy a 
quadratic polynomial model25. The design was modified to include additional points for lack of fit and error esti-
mation25. Overall, the experiment consisted of 17 yeast ×​ sucrose mixtures used to prepare 17 artificial diets, each 
replicated five times (Table 1). The experimental design layout is presented in Supplementary Table S2.

Experiment 2.  We used a randomized two-factor design to evaluate the effects of nutrient ratios in the lar-
val diet, chlorogenic acid and their interactions on the development and survival of A. ludens (see Response 
variables section). Diet had two levels with different nutrient ratios: high yeast-low sucrose and low yeast-high 
sucrose (Supplementary Table S1). Chlorogenic acid was added to the diets at one of two concentrations: 16 or 
32 mg/100 g of artificial diet (Supplementary Table S3). The experiment consisted of six diet ×​ chlorogenic acid 
combinations, each of which was replicated three or four times (Supplementary Table S3).

Experimental Procedure.  Samples of 20 g of each diet were placed in plastic Petri dishes (5 cm diame-
ter ×​ 2 cm tall) without a lid, together with 25 and 20 A. ludens neonate larvae for Experiment 1 and Experiment 2,  
respectively. Petri dishes with diet and larvae were placed individually inside plastic containers (7 cm diame-
ter ×​ 6 cm height) containing a 1 cm layer of vermiculite as a pupation substrate. Plastic containers were closed 
with a lid that had a 5 cm diameter hole covered with organdy cloth, and placed in a dark room at 30 ±​ 1 °C and 
70 ±​ 5% RH. Petri dishes with diet and larvae were the experimental units. To pupate, larvae crawl from the 
diet into the vermiculite. Pupation was checked daily, beginning seven days after the start of the experiment, 
by removing Petri dishes with diet from the plastic containers and sifting vermiculite. Five days after the begin-
ning of pupation, diets were also inspected for pupae. All pupae found in vermiculite and/or diet were removed 
and placed in Petri dishes (4 cm diameter ×​ 1.5 cm tall) with a perforated lid to allow ventilation. Pupae were 
incubated at 27 ±​ 1 °C, 63 ±​ 5% RH, and photoperiod of 12: 12 (light: dark). When pupae of Experiment 1 and 
Experiment 2 reached 11 and three days old, respectively, they were weighed using an analytical balance (Sartorius 
CP64), and individually placed inside plastic cells (1.6 ×​ 1.6 cm) of a compartmentalized dish, covered with a 
transparent acrylic lid with perforations to allow ventilation, until adult emergence and death.

Response Variables.  Experiment 1.  The following response variables were measured: (1) survival to pupa, 
expressed as the proportion of individuals reaching the pupal stage in relation to total number of larvae placed in 
each Petri dish with diet; (2) duration of the larval stage, estimated as the mean of the difference between day of 
egg hatch and day of pupation; (3) mean pupal weight (mg), estimated by weighing each cohort of pupae 11 days 
after pupation, summing the weight of all cohorts within a single replicate and dividing it by the total number of 
pupae per replicate; (4) adult emergence, expressed as the proportion of adults emerged in relation to the total 
number of pupae recovered from each diet; (5) duration of the pupal stage, calculated as the mean of the differ-
ence of day of adult emergence minus day of pupation; (6) adult desiccation and starvation resistance, measured 
every 12 h (at 09.00 and 21.00 hours) from adult emergence until death, and expressed as the mean adult lifespan 
in hours in the absence of food or water. Individuals were considered dead when they were immobile and did not 
respond to the touch of a plastic probe.

Experiment 2.  The response variables were the same as described in Experiment 1, but instead of survival to 
pupae and adult emergence, we measured immature survival and immature development time to adulthood.

Statistical Analyses.  Data for each response variable were first explored graphically to visualize the spread 
of the data37. A priori data exploration was followed by graphical examination of outliers and influential data 
points after model fitting. Response surface methods (RSM) were used to model the data25. In Experiment 1, 
Scheffé polynomial models from the linear to the quartic were fitted sequentially for each response variable, 
with yeast × sucrose mixtures as explanatory variables. Scheffé polynomial models are a form of predictive mod-
els designed specifically for mixtures accounting for the constraint that all mixtures sum to a constant25,36. In 
Experiment 2, in addition to the range of standard models, a two-factor interaction model was also fitted, with 
diet (high yeast–low sucrose and low yeast–high sucrose), chlorogenic acid content and the diet ×​ chlorogenic 
acid content interaction as explanatory variables. Model selection was then based on: (a) lack of any aliased terms; 
(b) low residuals; (c) a low model P-value; (d) non-significant lack of fit; (e) low standard deviation; (f) high R2, 
adjusted R2 (R2

adj) and predicted R2 (R2
pred); (g) close agreement between R2

adj and R2
pred; and (h) a low predicted 

residual sum of squares (PRESS) value in relation to the other models25. The selected model was further examined 
by analysis of variance (ANOVA). When possible, model simplification was performed by backward elimination 
of non-significant terms in the model. The relative effect of each mixture component and their interactions on 
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the various response variables was estimated by examining the model coefficients (β​). Normality and homosce-
dasticity were examined graphically via normal probability plots of residuals following ANOVA and by plotting 
the internally studentized residuals against the predicted responses25. Potential outlier points were identified by 
examination of plots of externally studentized “outlier-t”38,39 and Cook’s distance40 values. Box-Cox plots were 
used to identify, if required, the correct power law transformation41. DFFITS (a measure of influence based on 
the difference in fits in each predicted value) and DFBETAS (a measure of influence based on difference in model 
coefficients) plots were used to identify overly influential data points42. In Experiment 1, one data point was 
ignored for the analysis of the duration of the larval stage, pupal weight and adult emergence, and one data point 
for the analysis of the duration of the pupal stage. The rationale for the exclusion of these points is explained in 
detail in the Supplementary Information.

In Experiment 1, data on adult emergence were logit transformed prior to analyses to normalize and correct 
heteroscedasticity of residuals25. In Experiment 2, data on development time to adulthood and pupal weight were 
rank transformed43, because heteroscedasticity could not be corrected by any power law transformation.

Pearson’s correlation analyses were used to examine the association between recorded response variables from 
Experiment 1.

The software Design-Expert®​ 8 (Stat-Ease, Inc, Minneapolis, MN) was used for experimental design con-
struction and statistical modelling. Boxplots and Pearson’s correlation analyses were performed with the software 
package R44. Statistical significance for all tests was set at a critical value of α​ =​ 0.05.

Results
Experiment 1.  The recorded response variables and exploratory boxplots are shown in Supplementary 
Table S2 and Supplementary Fig. S1, respectively. The protein, lipid, carbohydrate and calorie content of each 
yeast ×​ sucrose mixture is presented in Table 1.

A summary of the ANOVA, lack of fit test and the R2 statistics of models fitted to all response variables, are 
presented in Table 2. With the exception of adult emergence, all other response variables varied significantly 
(P <​ 0.001) according to the composition of the yeast ×​ sucrose mixtures tested. Lack of fit statistics for models 
fitted to all response variables were not significant, indicating that fitting a different model would not result in a 
significant reduction in the variation in residual values. Diagnostic and influence plots for each model and model 
discussion are presented in Supplementary Figs S3–S10.

Survival to pupa.  A quadratic model indicated that both individual yeast (β​ =​ −​0.063; 95% CI: −​0.20, 0.077) 
and sucrose (β​ =​ −​0.12; 95% CI: −​0.26, 0.024) components each had a negative effect on larval survival to pupae, 
and that the yeast ×​ sucrose mixture (β​ =​ 3.32; 95% CI: 2.68, 3.96) was necessary to achieve survival (Table 2). 
However, survival was not observed in all mixtures. No larvae survived in diets with a yeast:sucrose mixture in 
the range of 0:100 to 12:88, or in the diet consisting of 100:0. In contrast, the proportion of larvae that pupated in 
diets with a range of yeast:sucrose mixtures from 24:76 to 76:24 was 1.0 or close to 1.0 (Fig. 1a). Survival to pupae 
in the 0:100 and 100:0 yeast:sucrose mixtures did not vary significantly (linear mixture not significant, Table 2).

Duration of the larval stage.  The duration of the larval stage ranged from an average (±​SE) of 9.2 (±​0.13) days 
in the 68:32 yeast:sucrose mixture to 13.3 (±​0.38) days in the 24:76 yeast:sucrose mixture (Fig. 1b). A quadratic 
model indicated that the interaction of yeast ×​ sucrose significantly reduced larval development time (β​ =​ −​10.29;  
95% CI: −​14.29, −​6.29), whereas the relative contributions of individual sucrose (β​ =​ 15.63; 95% CI: 14.40, 
16.86) and yeast (β​ =​ 10.25; 95% CI: 9.54, 10.96) components, tended to increase the duration of the larval stage 
(Table 2).

Pupal weight.  The mean weight of 11 day old pupae (estimated from the weights of cohorts of pupae) ranged 
from 4.03 mg in the 42:58 yeast: sucrose mixture to 19.76 mg in the 42:58 yeast:sucrose mixture (Fig. 1c). A 

Response variablesa

ANOVA

R2 R2
adj R2

predModelb Linear mixturec Y ×​ S Lack of fitd

Survival to pupa F =​ 53.09 P <​ 0.0001 F =​ 0.35 P =​ 0.5568 F =​ 105.83 P <​ 0.0001 F =​ 1.45 P =​ 0.1555 0.56 0.55 0.54

Duration of the larval stage F =​ 56.96 P <​ 0.0001 F =​ 92.34 P <​ 0.0001 F =​ 27.04 P <​ 0.0001 F =​ 0.61 P =​ 0.7799 0.75 0.74 0.72

Pupal weight F =​ 5.24 P =​ 0.0096 F =​ 4.39 P =​ 0.0426 F =​ 6.09 P =​ 0.018 F =​ 0.091 P =​ 0.9996 0.21 0.17 0.12

Adult emergence F =​ 3.76 P =​ 0.0595 F =​ 3.76 P =​ 0.0595 ̶​ F =​ 0.32 P =​ 0.9683 0.08 0.06 0.002

Duration of the pupal stage F =​ 133.33 P <​ 0.0001 F =​ 133.33 P <​ 0.0001 ̶​ F =​ 1.78 P =​ 0.1091 0.77 0.76 0.73

Desiccation and starvation resistance F =​ 64.56 P <​ 0.0001 F =​ 61.05 P <​ 0.0001 F =​ 68.06 P <​ 0.0001 F =​ 1.02 P =​ 0.4478 0.76 0.75 0.72

Table 2.   ANOVA and summary statistics for models fitted to data on larval survival to pupa, duration 
of the larval stage, pupal weight, adult emergence, duration of the pupal stage and adult resistance to 
desiccation and starvation of Anastrepha ludens reared on artificial diets with varying proportions of yeast 
(Y) and sucrose (S). aPrior to model fitting, data on adult emergence were normalized by a logit transformation; 
data from all other response variables were modelled without transformation. bLinear models were fitted to data 
on adult emergence and on the duration of the pupal stage; quadratic models were fitted to all other response 
variables. cThe linear mixture compares the response at the extreme ends of the model. dVariation of the data 
around the fitted model.
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quadratic model indicated that sucrose (β​ =​ 6.17; 95% CI: −​2.16, 14.50) had a stronger, but more variable posi-
tive influence on pupal weight than yeast (β​ =​ 5.09; 95% CI: 0.28, 9.90), and the yeast ×​ sucrose interaction had 
the largest positive effect on pupal weight (β​ =​ 33.03; 95% CI: 5.97, 60.09) (Table 2). Pupal weights were highly 
variable across some of the diets evaluated, and the model explained only 17% of the observed variance (Table 2).

Adult emergence.  The proportion of adults that emerged ranged from 0.25 in the 42:58 yeast:sucrose mixture to 
1.0 in various diets among the 24:76 and 76:24 yeast:sucrose mixtures (Fig. 1d). A linear model provided the best 
fit to logit transformed proportions, and indicated that emergence of adult flies reared on the different diets did 
not vary significantly according to the mixtures tested (Table 2). However, the coefficient estimated for sucrose 
(β​ =​ 9.68; 95% CI: 5.51, 13.86) was larger than that of yeast (β​ =​ 2.58; 95% CI: −​1.20, 6.36), suggesting a stronger 
positive effect of sucrose on adult emergence.

Duration of the pupal stage.  The duration of the pupal stage ranged from an average of 14.0 days (calculated 
from two individuals with a duration of 14 days each) in the 93:7 yeast:sucrose mixture to 16.6 (±​0.17) days in 
the 24:76 yeast:sucrose mixture (Fig. 1e). A linear model indicated that pupae took longer to develop to adult-
hood when larvae had fed on diets with high proportions of sucrose (β​ =​ 16.79; 95% CI: 16.57, 17.01), whereas 
they developed faster as the proportion of sucrose relative to yeast decreased (β​ =​ 14.56; 95% CI: 14.36, 14.75) 
(Table 2).

Adult desiccation and starvation resistance.  The mean duration of adult survival without water and food ranged 
from 36.0 (±​8.6) h in the 93:7 yeast:sucrose mixture to 93.3 (±​2.8) h in the 58:42 yeast:sucrose mixture (Fig. 1f). 
A quadratic model indicated that the interaction of yeast ×​ sucrose in the larval food significantly increased 
resistance to desiccation and starvation (β​ =​ 179.92; 95% CI: 135.84, 223.99), the contribution of sucrose on des-
iccation and starvation resistance was positive and larger (β​ =​ 46.08; 95% CI: 32.50, 59.65) than the contribution 
of yeast (β​ =​ 36.55; 95% CI: 28.72, 44.38) (Table 2).

Pearson’s correlation.  Significant correlations among the various phenotypic traits measured were all positive 
(Fig. 2). Adult desiccation and starvation resistance (r =​ 0.63), the duration the pupal stage (r =​ 0.47) and adult 
emergence (r =​ 0.86) rose significantly as the proportion of larval survival to pupae increased. The duration of 
the pupal stage (r =​ 0.68) was significantly correlated with the duration of the larval stage. Adult emergence 

Figure 1.  Models of best fit to data on: (a) survival to pupa (proportion), (b) duration of the larval stage 
(days), (c) pupal weight (mg), (d) adult emergence (proportion), (e) duration of the pupal stage (days), and 
(f) desiccation and starvation resistance (in hours) of Anastrepha ludens fed on diets with varying proportions 
of yeast and sucrose. The solid line represents the model fitted to the data, and dotted lines indicate the 95% 
confidence interval. Numbers next to circles indicate the number of observations at the same coordinate. See 
Table 2 for statistical information.
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(r =​ 0.76), the duration of the pupal stage (r =​ 0.43) and adult desiccation and starvation resistance (r =​ 0.59) rose 
significantly with pupal weight. The duration of the pupal stage (r =​ 0.48) and adult desiccation and starvation 
resistance (r =​ 0.63) were significantly correlated with adult emergence. Adult desiccation and starvation resist-
ance (r =​ 0.69) rose significantly with the duration of the pupal stage.

Experiment 2.  The recorded response variables and exploratory boxplots are shown in Supplementary Table S3  
and Supplementary Fig. S2, respectively.

A summary of the ANOVA, lack of fit tests and the R2 statistics of models fitted to all response variables are 
given in Table 3. Models fitted to results on duration of the larval stage and development time to adulthood were 
significant (P <​ 0.05). Models fitted to pupal duration, pupal weight and desiccation and starvation resistance 
were not significant (P >​ 0.05). Lack of fit test statistics were not significant for any of the models. Diagnostic and 
influence plots for each model and model discussion are presented in Supplementary Figs S11 and S12.

Duration of the larval stage.  Larval development time increased as the concentration of chlorogenic acid rose 
in the low yeast-high sucrose diet, but not in the high yeast-low sucrose diet (Fig. 3). A two-factor interaction 
model (Table 3) revealed a significant effect of the diet yeast:sucrose ratio (β​ =​ −​0.55, 95% CI: −​0.85, −​0.25) 
and diet ×​ chlorogenic acid interaction (β​ =​ −​0.38, 95% CI: −​0.75, −​0.011). Larvae took longer to complete 
development when fed on low yeast-high sucrose diet treated with 32 mg of chlorogenic acid, compared to larvae 
fed on low yeast-high sucrose diets without chlorogenic acid or on high yeast-low sucrose diet with or without 
chlorogenic acid (Fig. 3).

Duration of the pupal stage.  No significant effects of the diet yeast:sucrose ratio, chlorogenic acid content or their 
interaction were detected after backward elimination of non-significant terms (P ≥​ 0.0673) from a two-factor 
interaction model. The overall mean of 15.03 ±​ 0.12 days provided the best description of the data (Table 3, 
Supplementary Fig. S2).

Pupal weight.  The lowest mean weights of 11 day old pupae were observed in the low yeast-high sucrose con-
tent diet treated with 32 mg of chlorogenic acid (Supplementary Fig. S2). However, there was no significant 

Figure 2.  Pair-wise correlation matrix between survival to pupa, duration of the larval stage, duration of 
the pupal stage, pupal weight, adult emergence, and desiccation and starvation resistance of Anastrepha 
ludens reared on diets with varying proportions of yeast and sucrose. The correlation coefficients and level of 
significance (*​*​P <​ 0.01, *​*​*​P <​ 0.001, absence of an asterisk indicates a non-significant correlation) are show 
on the right of the diagonal; the font size of the correlation coefficients is proportional to its value. The scatter-
plot matrix is shown on the left side of the diagonal.
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effect of the diet yeast:sucrose ratio or chlorogenic acid content on pupal weight after backward elimination of 
non-significant terms (P ≥​ 0.1299) from a linear model. Thus, the overall mean of 18.42 ±​ 0.53 mg provided the 
better description of the data (Table 3).

Survival to adult.  The lowest proportion of larvae that reached adulthood was 0.4, observed in both low 
yeast-high sucrose and high yeast-low sucrose diets with 32 mg of chlorogenic acid/100 g of diet (Supplementary 
Fig. S2). The highest proportion of survival was 0.6, observed in both low yeast-high sucrose, with or without 
chlorogenic acid, and high yeast-low sucrose diets with either chlorogenic acid treatment (Supplementary Fig. S2).  
No significant effect of the yeast:sucrose ratio, chlorogenic acid content, or the interaction of yeast:sucrose 
ratio ×​ chlorogenic content, was detected in survival to adulthood by any model from the linear to the cubic 
(P ≥​ 0.4152). A null model indicated that the overall mean (average proportion ±​ SE) of 0.53 ±​ 0.014 provided 
the best description of survival to adulthood (Table 3).

Development time to adulthood.  Development time from neonate larvae to adulthood was significantly 
affected by the yeast:sucrose ratio in the diet, but not by chlorogenic acid content or the yeast:sucrose ratio in 
the diet ×​ chlorogenic acid interaction, as indicated by a reduced linear model (Table 3). Insects reached the 
adult stage faster when fed on diets with high yeast-low sucrose regardless of the chlorogenic acid treatment 
(Supplementary Fig. S2).

Response variablesa

ANOVA

R2 R2
adj R2

predModelb Diet C. acid Diet × C. acid Lack of fitc

Duration of the larval stage F =​ 7.46 P =​ 0.0019 F =​ 15.22 P =​ 0.001 F =​ 4.05 P =​ 0.0594 F =​ 4.67 P =​ 0.0443 F =​ 0.84 P =​ 0.3741 0.55 0.48 0.31

Duration of the pupal stage — — — — F =​ 1.99 P =​ 0.1347 0.0 0.0 −​0.09

Pupal weight — — — — F =​ 1.32 P =​ 0.3044 0.0 0.0 −​0.09

Survival to adult — — — — F =​ 0.45 P =​ 0.8088 0.0 0.0 −​0.09

Development time to adulthood F =​ 7.84 P =​ 0.0111 F =​ 7.84 P =​ 0.0111 — — F =​ 1.44 P =​ 0.2664 0.28 0.25 0.13

Desiccation and starvation resistance — — — — F =​ 1.36 P =​ 0.2892 0.0 0.0 −​0.09

Table 3.   ANOVA and summary statistics for models fitted to data on the duration of the larval stage, 
duration of the pupal stage, pupal weight, survival to adult, development time to adulthood and adult 
resistance to desiccation and starvation of Anastrepha ludens reared on low yeast-high sucrose and high 
yeast-low sucrose content diets (Diet) treated with chlorogenic acid (C. acid). aPrior to model fitting, data on 
pupal weight and development time to adulthood were normalized by rank transformation. Data from all other 
response variables were modelled without transformation. bA mean model was fitted to data on the duration of 
the pupal stage (after reduction from a 2-factor interaction model), pupal weight (after reduction from a linear 
model), survival to adult and adult resistance to desiccation and starvation (after reduction from a quadratic 
model); a reduced linear model was fitted to data on development time to adulthood; a 2-factor interaction 
model was fitted to data on the duration of the larval stage. cVariation of the data around the fitted model.

Figure 3.  The duration of the larval stage (days) of Anastrepha ludens fed on low yeast-high sucrose ( ) and 
high yeast-low sucrose ( ) diets treated with chlorogenic acid. Circles are actual responses, and the endpoints 
represents mean model estimates with least significant difference bars. Numbers next to circles indicate the 
number of observations at the same coordinate. See Table 3 for statistical information.
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Adult desiccation and starvation resistance.  Individuals fed as larvae on the low yeast-high sucrose diet treated 
with 32 mg of chlorogenic acid lived for shorter periods as adults when subjected to desiccation and starvation 
(Supplementary Fig. S2). However no significant effect of the yeast:sucrose ratio, chlorogenic acid content or 
diet ×​ chlorogenic acid interaction was detected, as indicated by a mean model fitted after backward elimination 
of non-significant terms (P ≥​ 0.0971) from a quadratic model (Table 3). The mean adult survival time without 
food was 85.3 ±​ 2.01 h.

Discussion
Our study provides clear support to the hypothesis that early life nutrition generates cascading effects across 
the immature and adult phenotypes that shaped life history variables of the devastating fruit fly pest A. ludens. 
In Experiment 1, changes in yeast and sucrose proportions resulted in larval diets that varied in protein, lipid 
and carbohydrate content (Table 1, and Supplementary Table S1). As such, the availability of nutrients in the 
larval food resulted in phenotypic variation across the larval, pupal and adult stages of A. ludens. The quadratic 
responses observed for survival to pupa, the duration of the larval stage, pupal weight, and desiccation and star-
vation resistance (Fig. 1), resembled the inverted U-shape and J-shaped dose response curves from the nutritional 
pharmecology principle of hormesis and Bertrand’s rule22. This suggests that an extreme nutritional imbalance 
in food (protein and carbohydrate in our study), was deleterious, i.e., at extreme concentrations nutritious food 
components are likely to be toxic. Anastrepha ludens larvae appeared to be more sensitive to high carbohy-
drate:protein ratios in their diet than to low carbohydrate:protein ratios (Fig. 1a, Table 1). Protein consumption 
on diets containing 88–97% yeast relative to sucrose was tolerated by some individuals, albeit at a high cost for 
larval survival and adult resistance to desiccation and starvation (Fig. 1a,f).

Our results did not provide strong evidence to support the view of physiological trade-offs mediated by nutri-
ents in the larval diet, as indicated by the lack of significant correlations and only positive associations in the 
correlation analyses (Fig. 2). The results suggested a trade-off in desiccation and starvation resistance and the 
duration of the pupal stage, that were more strongly correlated with each other than with any other measured 
trait. Pupae with longer developmental periods tended to exhibit higher weights and were able to resist desicca-
tion and starvation as adults for longer periods than flies that emerged earlier from pupae with lighter weights. 
Rapid development to adulthood may have diverted bodily resources required to deal with water and food lim-
itation in the adult stage, reflecting a conflicting use of resources between the rate of development to adulthood 
and desiccation and starvation resistance. Indeed, phenotypic variation in life history traits may reflect differential 
resource allocation to competing life functions3,31. To resist starvation, adult Drosophila flies make use of lipid 
reserves stored after use as energy suppliers during metamorphosis13,45. Similarly, A. ludens larvae that developed 
on diets with an elevated proportion of sucrose, may have been able to accumulate larger lipid reserves than those 
that fed on lower sucrose diets. Considering the nutritional contribution of corn flour and corncob fractions in 
the basic diet, larvae that developed to adulthood on the lowest sucrose proportion diet had an 8% lower calorie 
content than diets with the highest sucrose proportion (Supplementary Table S1). Energetic reserves accumulated 
during larval development, likely stored as lipids, could have lasted through metamorphosis and been used to 
resist starvation for longer periods in the adult stage. This would need confirmation, as studies with the tephritid 
Ceratitis capitata (Wiedemann) have argued that lipid accumulation in newly emerged adults is independent of 
the sucrose content in the larval food18, and that high levels of dietary carbohydrate may in fact depress the lipo-
genic activity of developing larvae19.

Growing fast may have fitness costs and benefits. For instance, reproductive success can improve if individuals 
reaching adulthood faster than others in the same cohort gain additional time to find mates and reproduce46. In 
contrast, growing fast may depress immune function in some insects3. Our results suggest that rapid development 
of A. ludens to adulthood would be disadvantageous in situations where they will face water and food shortage 
or when developing on a suboptimal diet, whereas individuals growing slower could be better fitted to face water 
and food limitation in the adult stage (Fig. 2). The prolonged larval and pupal developmental periods observed 
on diets with 25% yeast could suggest that larvae prolonged their feeding period to consume enough of the nutri-
ent present in very low concentrations (e.g., protein), while at the same time avoiding overconsumption of the 
abundant nutrient (sucrose) in potentially toxic quantities. Nutrient intake regulation has been reported in many 
animals, and foraging theory has been employed to interpret this behaviour as a strategy to maximize fitness in 
the face of stressful nutritional environments21,47. To determine if A. ludens larvae modify their feeding behaviour 
in response to nutrient limitations in their diet, it will be necessary to develop a technique that allows the precise 
quantification of specific nutrient consumption. This is a challenge for dipteran larvae in general, as feeding larvae 
defecate when tunnelling through the diet, and faeces mix with diet making it difficult to directly and accurately 
measure diet consumption.

In Experiment 2, we examined the effects of a natural plant phenolic compound on A. ludens development 
and survival as mediated by the nutrient content of the larval food. Chlorogenic acid affected A. ludens larval 
development time in a nutrient and concentration dependent manner (Fig. 3). One possible explanation for the 
extended duration of the larval stage observed in diets with low yeast-high sucrose content treated with 32 mg 
of chlorogenic acid, is that such diets may have been more difficult to digest than alternative diets, thus slowing 
feeding rate and thereby extending the duration of the larval stage. Chlorogenic acid may act as antinutritional 
compound due to its ability to covalently bind to proteins, thus inhibiting protein digestion28,48. The combination 
of reduced protein (yeast) levels and a high concentration of chlorogenic acid may have reduced the insect’s abil-
ity to assimilate protein, resulting in an extended larval development time. However, this seems unlikely as the 
antinutritional effect of chlorogenic acid occur in guts with a pH 8–948, whereas tephritid larvae have acidic guts 
with a pH 3.4–6.649. Acid pHs do not promote formation of covalent bonds between phenolics and other com-
pounds50. Alternatively, low yeast-high sucrose diets treated with a high concentration of chlorogenic acid may 
have been unpalatable to larvae, thus slowing the feeding rate. In fact, chlorogenic acid is recognized as an insect 
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antifeedant26. Further studies should also consider exploring host plant secondary metabolites effects on tephritid 
larval microbiota in terms of nutrient assimilation or compensation51,52, as many plant secondary metabolites, 
such as chlorogenic acid, exhibit antimicrobial activity53.

The responses of insects to diverse nutritional environments observed in laboratory studies with artificial 
diets, are useful to formulate predictions on the foraging and feeding behaviour and performance of insects in 
nature6. Based on our results, we propose that the ability of A. ludens to establish and thrive in novel host fruit 
could be restricted by the availability and ratio of nutrients in fruit, and by the presence of secondary metabo-
lites in high concentrations in the context of particular nutrient ratios. Anastrepha ludens individuals exploiting 
host fruit with a high proportion of sugars relative to protein, could have longer larval and pupal developmental 
periods than their counterparts using host fruit with low proportion of sugar relative to protein, as predicted by 
our models (Fig. 1b,c). Similarly, longer developmental periods could be expected in host fruit with a high pro-
portion of sugars relative to protein and a high content of certain phenolic compounds than in host fruit with a 
lower proportion of sugar relative to protein and a similar content of phenolics (Fig. 3). Interestingly, longer larval 
development times were reported when A. ludens developed in the apple cultivar ‘Fuji’ compared to larvae that 
developed in cultivar ‘Golden’20. ‘Fuji’ apples have a higher proportion of sucrose:protein than ‘Golden’ apples 
(‘Fuji’: 91.7:8.3; ‘Golden’: 88.1:11.9)54, and also a higher total content of phenolic compounds (‘Fuji’: 1.39 g/kg; 
‘Golden: 1.21 g/kg)20.

Longer developmental periods are associated with a longer period of exposure to natural enemies and thus 
with a higher risk of mortality, as predicted by the slow-growth – high-mortality hypothesis55. Anastrepha ludens 
is attacked by several natural enemies including larval and pupal parasitoids32. Thus, we could expect a higher 
level of pupal parasitism in individuals from populations exploiting host fruit with a high proportion of sugars 
relative to protein and relatively high amounts of phenolic compounds, than in individuals exploiting host fruit 
with balanced or relatively low sugar content. Natural selection could favour individuals that escape parasitization 
or predation by developing faster as immatures in fruit with a low sugar:protein ratio. More research is required 
to test these types of predictions from studies using precisely defined diets, including the assessment of the abun-
dance and ratios of nutrients in natural host fruit6.

The use of a mixture experiment approach in our study presented various advantages over more conservative 
‘one variable at a time’ (OVAT) approach commonly used in animal nutritional biology studies. OVAT experi-
ments consider explanatory variables measured on a continuous scale into factors, and the level of one factor is 
varied while the levels of other factors are kept constant56,57. This causes a loss of explanatory power in the anal-
yses as it is only possible to make comparisons between the levels of the factors evaluated; predictions cannot be 
generated on levels not evaluated. For example, OVAT experiments were used to explore diet effects on the ability 
of pupating C. capitata larvae to accumulate protein and lipids, and on developmental indicators such as develop-
ment time, pupation and adult production19. In a first experiment, yeast level in the diet varied while maintain-
ing a constant level of sucrose; in the second experiment, sucrose level varied while keeping a constant level of 
yeast. This OVAT experiment allowed the identification of the yeast ×​ sucrose combination(s) with the strongest 
effects on the response variables19. However, this design did not provide information on interactions and was 
unable to make predictions of dietary levels not evaluated. Unlike OVAT experiments, the mixture experiment 
we employed, allowed us to simultaneously examine yeast, sucrose, and their interactions, as well as to construct 
statistical models of use for evaluating the direction and contribution of each mixture component, and to make 
predictions concerning mixtures that had not been evaluated empirically.

Although we estimated the protein, lipid and carbohydrate input of yeast and sucrose mixtures to each of the 
diets tested, we were unable to separate the individual effects of nutrients within yeast (e.g., protein, lipids and 
carbohydrates). This is a caveat in our study that we clearly recognize, but that we believe does not invalidate the 
way we have interpreted our results. To address this issue, a fully chemically defined holidic diet is required to rear 
A. ludens. We also recognize that modifying the yeast:sucrose proportions in the diet affected diet consistency and 
texture, and this should be taken into consideration in future studies.

In summary, A. ludens was able to survive and develop to adulthood in 12 different diets across a wide range 
of nutrient ratios (Fig. 1, Table 1). Nevertheless, the nutritional balance of the larval diet induced changes in A. 
ludens phenotype across the larval, pupal and adult stages. With the exception of a potential trade-off between the 
duration of the pupal stage and adult resistance to desiccation and starvation, no physiological and developmental 
trade-offs were detected. The nutrient balance of the larval diet conditioned the effects of chlorogenic acid on A. 
ludens larval development. Further studies should look into this topic and explore the interactions between differ-
ent food components, modulating A. ludens phenotype across life stages and mediating interactions between A. 
ludens and other organisms. This is at the centre of nutritional ecology24,58, and is a major challenge in nutritional 
immunology59. The experimental and modelling approach reported here could be helpful in achieving these goals 
and contribute to generating predictive models of life history traits in a wide variety of organisms. We conclude 
that nutritional and non-nutritional food components in the larval diet of this devastating fruit fly pest have 
cascading effects across the immature and adult stages and could mediate interactions affecting the fly’s ability to 
establish and thrive in novel hosts.
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